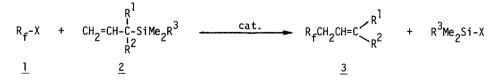
Tetrahedron Letters, Vol.25, No.3, pp 307-308, 1984 Printed in Great Britain

TRANSITION-METAL COMPLEX CATALYZED POLYFLUOROALKYLATION. II. NOVEL AND CONVENIENT ROUTE TO 3-POLYFLUOROALKYLPROP-1-ENES THROUGH THE REACTION OF POLYFLUOROALKYL HALIDES WITH ALLYLSILANES

Takamasa Fuchikami and Iwao Ojima<sup>1</sup>


Sagami Chemical Research Center, Nishi-Ohnuma 4-4-1, Sagamihara, Kanagawa 229, Japan

Summary: The reactions of polyfluoroalkyl halides with allylsilanes catalyzed by iron or ruthenium carbonyl complexes give 3-polyfluoroalkylprop-1-enes in good yields under mild conditions.

Recently, it has been shown that allylsilanes are versatile reagents for introducing allylic moieties in organic synthesis.<sup>2</sup> In the course of our study on the polyfluoroalkylation of carbon-carbon multiple bonds catalyzed by Group VIII transition-metal complexes,<sup>3</sup> we looked at the reactivity of allyltrimethylsilane toward the polyfluoroalkylation in the hope of exploiting new and convenient method for the allylation of polyfluoroalkyl halides, which gives synthetic building blocks for a variety of organofluorine compounds. If the reaction would proceed in a manner similar to that with normal alkenes,<sup>3</sup> 2-halo-3-polyfluoroalkylpropyl-trimethylsilane should be obtained. However, it was anticipated that the reaction would give 3-polyfluoroalkylprop-1-ene through the elimination of halotrimethylsilane i) from initially formed 2-halo-3-polyfluoroalkylpropyltrimethylsilane under the given reaction conditions or ii) via 3-polyfluoroalkyl-1-trimethylsilylprop-2-ylmetal halide, or through the elimination of trimethylsilyl radical (or ion) via 3-polyfluoroalkyl-1-trimethylsilylprop-2-yl radical (or ion). In fact, we found that the reaction of polyfluoroalkyl iodides or bromides with allyl-

$$R_{f} \xrightarrow{\chi} SiMe_{3}$$
  $R_{f} \xrightarrow{M-\chi} SiMe_{3}$   $R_{f} \xrightarrow{(+)} SiMe_{3}$ 

trimethylsilane catalyzed by  $Fe_3(CO)_{12}$  or  $Ru_3(CO)_{12}$  gave 3-polyfluoroalkylprop-1-ene exclusively in high yields: No simple adducts were obtained at all. Accordingly, the reaction has turned out to serve as novel and convenient method for the allylation of polyfluoroalkyl halides.



Typically, a mixture of polyfluoroalkyl halide (<u>1</u>) (2.0 mmol), allylsilane (<u>2</u>) (2.0 mmol) and  $Fe_3(CO)_{12}$  or  $Ru_3(CO)_{12}$  (0.6-4.0 x  $10^{-2}$  mmol) was sealed in a Pyrex tube (5 ml) and heated at 60°C for 3-20 h with stirring. Then the reaction mixture was submitted to distillation or preparative GLC to give 3-polyfluoroalkylprop-l-ene (<u>3</u>) and halosilane. Results are summarized in Table 1.

| Entry | R <sub>f</sub>                        | х  | R <sup>1</sup> | R <sup>2</sup>                  | $R^3$ | Cat. <sup>a</sup><br>(mol%) | EA <sup>b</sup><br>(mol%) | Temp.<br>(°C) | Time<br>(h) | Product <sup>c</sup><br>(% yield) |
|-------|---------------------------------------|----|----------------|---------------------------------|-------|-----------------------------|---------------------------|---------------|-------------|-----------------------------------|
| 1     | C <sub>3</sub> F <sub>7</sub>         | I  | Н              | н                               | Me    | Fe <sub>3</sub> (2.0)       |                           | 60            | 12          | <u>3a</u> (80)                    |
| 2     | C <sub>8</sub> F <sub>17</sub>        | Ι  | Н              | Н                               | Me    | Ru <sub>3</sub> (0.3)       |                           | 60            | 19          | <u>3b</u> (71)                    |
| 3     | CF <sub>2</sub> CF <sub>2</sub> Br    | I  | Н              | н                               | Ме    | Fe <sub>3</sub> (1.3)       | (12)                      | 60            | 3           | <u>3</u> c (85)                   |
| 4     | CFC1CF2C1                             | I  | Н              | Н                               | Me    | Fe <sub>3</sub> (1.3)       | (12)                      | 60            | 4           | <u>3d</u> (85)                    |
| 5     | CFHCF2C1                              | I  | H              | Н                               | Me    | Fe <sub>3</sub> (1.3)       | (12)                      | 60            | 3           | <u>3</u> e (75)                   |
| 6     | CFC1CF <sub>2</sub> Br                | Br | Н              | Н                               | Ме    | Ru <sub>3</sub> (0.3)       |                           | 60            | 6           | 3f (59)                           |
| 7     | CF(CF <sub>2</sub> Br)CF <sub>3</sub> | Br | Н              | Н                               | Ме    | Fe <sub>3</sub> (1.3)       | (12)                      | 60            | 20          | 3g (40)                           |
| 8     | CFC1CF2C1                             | Ι  | Н              | CH <sub>2</sub> CF <sub>3</sub> | Ме    | Fe <sub>3</sub> (2.0)       | (15)                      | 60            | 2           | <u>3h</u> (85)                    |
| 9     | CFC1CF2C1                             | I  | Н              | Me                              | Н     | Ru <sub>3</sub> (0.6)       |                           | 60            | 3           | 3i (82)                           |
| 10    | CFC1CF2C1                             | I  | Н              | Н                               | Me    | hud                         |                           | 0             | 3           | 3d (65)                           |
| 11    | CFC1CF2C1                             | I  | Η              | Н                               | Me    | AIBN <sup>e</sup> (12)      |                           | 80            | 8           | <u>3d</u> (40)                    |

Table 1. Reaction of Polyfluoroalkyl Halides with Allylsilanes

<sup>a</sup> Fe<sub>3</sub>=Fe<sub>3</sub>(CO)<sub>12</sub>, Ru<sub>3</sub>=Ru<sub>3</sub>(CO)<sub>12</sub>. <sup>b</sup> EA=ethanolamine. <sup>c</sup> Determined by GLC. <sup>d</sup> Irradiated externally with 400 W high-pressure Hg lamp. e AIBN=azobisisobutyronitrile.

In order to elucidate the regioselectivity of the reaction, we carried out the reaction by employing 1,2-dichloro-1-iodo-1,2,2-trifluoroethane as polyfluoroalkyl halide and 1-(2,2,2-trifluoroethyl)prop-2-enyltrimethylsilane<sup>4</sup> and 1,1-dimethylprop-2-enyldimethylsilane<sup>5</sup> as allylsilane. Then, 6,7-dichloro-1,1,1,6,7,7-hexafluorohept-3-ene (3h)<sup>6</sup> and 5,6-dichloro-2-methyl-5,6,6-trifluorohex-2-ene  $(\underline{3i})^7$  were obtained in high yields (Entries 8 and 9): The formation of the other isomer was not observed by  $^{1}$ H and  $^{19}$ F NMR and GLC analyses at all in each case. The results clearly indicate that the polyfluoroalkylation of allylsilane takes place exclusively at the  $\gamma$ -position of allylsilane.

We also found that this type of reaction was effected by photo-irradiation (Entry 10) or a radical initiator (Entry 11) though the yield of 3d was lower than that achieved by Fe<sub>3</sub>(CO)<sub>12</sub>catalyzed reaction (Entry 4).

Further studies on the mechanism as well as application of the present reaction are actively in progress.

## REFERENCES AND NOTES

- 1. Present address: Department of Chemistry, State University of New York at Stony Brook, Stony Brook, New York 11794, USA.
- For recent reviews: (a) W. P. Weber, "Silicon Reagents for Organic Synthesis", Springer-2. Verlag, Berlin, 1983, pp 173-205; (b) H. Sakurai, Pure & Appl. Chem., 54, 1 (1982).
- 3. T. Fuchikami and I. Ojima, Tetrahedron Lett., the preceding paper in this issue.
- 4. This allylsilane was prepared by CuI-catalyzed coupling<sup>8</sup> of vinyl bromide with 3,3,3-trifluoro-1-trimethylsilylpropylmagnesium iodide.
- 5. A. Hosomi and H. Sakurai, *Tetrahedron Lett.*, 2589 (1978). 6. Compound <u>3h</u> (mixture of E and Z isomers): <sup>1</sup>H NMR (CDCl3:TMS):  $\delta$  2.6-3.4(m, 4H), 5.5-6.1(m, 2H).  $19_{\rm F}$  NMR (CDCl<sub>3</sub>:CFCl<sub>3</sub>):  $\delta$  -66.5, -66.9(t, J=10.5Hz, 3F), -67.0, -67.1(bd, J=9.5Hz, 2F), -120.2(m, 1F). Elemental analysis: Calcd. for C<sub>H</sub>Cl<sub>2</sub>F<sub>6</sub>: C, 30.57; H, 2.20. Found: C,
- 30.31; H, 2.38.
  Compound <u>3i</u>: <sup>1</sup>H NMR (CDCl<sub>3</sub>:TMS): δ 1.17(bs, 3H), 1.24(bs, 3H), 2.2-3.3(m, 4H), 3.68(s, 3H), 4.6(m, 1H). <sup>19</sup>F NMR (CDCl<sub>3</sub>:CFCl<sub>3</sub>): δ -66.6(d, J=10Hz, 2F), -118.9(m, 1F). Elemental analysis: Calcd. for C<sub>7</sub>H<sub>9</sub>Cl<sub>2</sub>F<sub>3</sub>: C, 38.04; H, 4.10. Found: C, 37.96; H, 4.16.
  J. F. Normant, A. Commercon. G. Cahiez and J. Villieras, C. R. Acad. Sci., Paris, (C) <u>278</u>, (C) 278.
- 967 (1974).

(Received in Japan 12 September 1983)